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Abstract
Visual cognitive styles manifest in ways humans implicitly process visual cues from their surroundings. A

question arises: how are cognitive styles to be measured? Classic approaches make use of questionnaires or figural
tasks. However, the nature of these approaches fails at capturing complexity of real visual compositions. With
the onset of (mobile) eye-tracking devices, this limitation can be overcome; the paradigm, however, still revolves
around receptive processing of existing visual material. The aim of this paper is to consider constructing 3D virtual
scenes, followed by utilizing such scenes in visual cognitive styles tasks – using virtual reality and eye-tracking
devices. While constructing virtual environments does indeed offer new possibilities, technological constraints
and visual perception limitations do, however, introduce some new limitations to the table. Therefore, offering a
methodological grasp of virtual scene construction is relevant.

Introduction
As characterized by some of the pioneers in the field of cognitive differences research (Ausburn &
Ausburn, 1978), cognitive style is: a psychological dimension that represents consistencies in how an
individual acquires and processes information. A visual cognitive style is a further, finer differentia-
tion of the former concept. However, since this metaphorical terrain of cognitive styles research has
grown ever so complex over the years (Kozhevnikov, 2007), it is also worth mentioning that in this
proposal, we chose to adhere to the definition of visual cognitive styles formulated by Kozhevnikov
& colleagues (Kozhevnikov et al., 2005); acc. to said researchers, there are categories of object
visualizers and spatial visualizers. Their definition is as follows:

Object visualizers Spatial visualizers

They prefer to construct vivid, concrete and
detailed images of individual objects; they
rely primarily on visual-object strategies;
they do better on object imagery tasks.

These prefer to schematically represent
spatial relations of objects and spatial
transformations; they rely primarily on
visual-spatial strategies; they do better on
spatial imagery tasks.

To measure visual cognitive styles, the original authors have been using the Object-Spatial Imagery
questionnaire (Blajenkova et al., 2006). While taking this into consideration as a baseline, in our
research, we intended to propose computerized ways of measuring visual cognitive styles that make
use of eye-tracking within 3D virtual environments.

This submission intends to cover the problematics of constructing 3D scenes salient for eye-tracking
stimuli, and to go over scene optimization – so as to ensure smoothness of data collection and future
data analysis.

Methods of 3D eye-tracking
By using a virtual reality headset with eye-tracking capability, extracting valid visual cognition data
out of a real-time 3D virtual world is entirely possible. There are, however, different possibilities of
collecting that eye-tracking data (and the choice of eye-tracking solution influences 3D scene creation,
and vice versa). The two key solutions to eye-tracking that are to be considered are:

Heatmap tracking Object tracking
In 2D eye-tracking applications, this approach col-
lects the X/Y coordinates of the eye; after the data
collection phase is done, the most/least frequented
gaze areas are plotted onto the 2D plane, by adding
a colored overlay on top of the plane. With 3D
solutions, this gets more complex, as the third di-
mension adds the Z axis (X/Y/Z), and a non-static
movement through the 3D environment introduces
an ever-changing viewport. Measurement accuracy
is great; however, both technical implementation
and data analysis of this approach are challenging.

Eye-tracking happens on the level
of 3D objects. An object in the
scene has two states: it is either
being fixated by eye-tracking, or
not. This allows for simplicity
in analysis/implementation; on the
other hand, when gazing into de-
tails of a single object, there is no
further data discrimination. I.e.,
the pros & cons of this are the op-
posite of the heatmap approach.

Due to the aforementioned complexities of 3D dynamic heatmap tracking, we opted for the object
tracking approach. This means that the elements of the scene shall be broken into individual 3D
objects, so that data can be collected on said objects.

Experimental design
In the pilot testing phase, there was no division of participants into experimental groups. The partic-
ipants, however, were screened on their visual cognitive styles disposition by self-administering the
OSIVQ questionnaire. Our intention was to compare these results to the performance and behaviour
in a 3D scene we’d construct.

The eye-tracking task was a part of a larger test battery – one that happened in 3D to an extent, being
supplemented by traditional pen & paper tasks. As for the 3D portion, we utilized the Unity engine
(version 5.4), the Oculus Rift DK2 headset, an SMI eye-tracking upgrade for said headset, along with
software solution of our own – to facilitate data collection.

Environmental design
To have something worthy of measuring in a scene, the intended scene must be purposely designed
in way of it being saturated in stimuli that are relevant to the theory we are following – i.e. to contain
measurable elements that engage both visual cognitive styles, differently, and these differences can
be recorded (and, possibly, predicted).

For a predominately object-oriented visualizer, outfitting the scene with objects rich enough in detail
is crucial. They spend a substantial amount of time on objects that catch their interest – provided said
objects are salient enough. As for spatial visualizers, enriching the scene with relationships is the key.
The spatial individual does not spend much time on individual objects; instead, they search for rules
that bound the elements of the scene into patterns.

Object cues Spatial cues

Unique. A common shortcoming of computer-
generated 3D scenes that these scenes appear
bland. This is so due to the creators of such
scenes re-using the same 3D objects over and
over again. Therefore, the objects of focus shall
be made of an unique 3D models.
Breaking the pattern. Patterned visual stim-
uli, such as those found in nature, are not
very demanding in terms of visual process-
ing/attention (Taylor et al., 2005). Therefore,
an object of focus shall aim for coming up with
a distinctive external shape (silhouette) and in-
ternal patterns. Let these be (somewhat) non-
repetitive/non-conventional, too.
Detailed. An object-oriented participant is in-
clined to gaze into the details of individual ob-
jects. To facilitate this, let the object have
unique features of varying details. As it is with
art, bland, visually simplistic areas shall com-
plement detailed, somewhat unexpected parts.
This should be contained within an object.

Lead lines. Visual art is processed as a flow of
lines (3-by-3, 2-by-2 division, 1/2/3 point per-
spective, horizon line, convergence of lines to
an “action center”, etc.) The participants tend
to follow these (guide)lines, or to proceed onto
an area of focus (ideally, any scene should have
more than one of these areas of focus, so as to
prevent pro-object visualizer interpretation).
Scene boundaries. These distinctive elements
should indicate where an intended scene ends.
Similarities. If there are multiple objects in the
scene with distinctively similar features, these
will form a logical group. The spatial visualizer
is expected to notice the pattern of similarities,
and to follow these groupings of objects.
Encompassion. This can be achieved by plac-
ing a large object that spans across a significant
area of the scene, followed by inserting supple-
mentary objects into the body of the large one
– all in a way that respects, and complements,
the shape and the flow of the large object.

Figure 1: (left) An object stimulus (a flag with detailed emblems in it). (right) An overall spatial layout of the scene.

Data (pre)analysis
In object-tracking, if we wish to gain extra data from an object in the scene prior to data collection, it
has to be broken into multiple sub-objects, while retaining its appearance of a whole object.

To prevent inaccuracies and/or data noise, it is recommended not to overlay eye-tracked 3D objects
onto other 3D objects; with the added depth axis of 3D imagery, it could be difficult to determine
the object of focus, should edges of multiple objects cross. In fact, eliminating the depth axis to an
extent is considered preferable; this can be achieved by placing the objects into the scene, followed by
placing a monolithic barrier of constant depth, beyond these eye-tracked objects. Also, to consider:
• Short distance of objects. Some 30m may be considered maximum (depending on object size).
• Object size. Noticeable and trackable objects should take up at least 5% screen width/height.
• Proper scene lighting should complement object recognizability.
• Objects on the edge of the scene will be implicitly harder to notice than objects in the middle.
• Static camera. To retain control over the experimental design.
• FOV of the scene, and the potential need for camera rotation (110 degrees, for most VR headsets).

The aforementioned reduces the potential for data noise. Furthermore, adding tolerance to object
boundaries and defining minimum eye-tracking fixation times, data clarity can be achieved.

Conclusions
We have developed a platform that allows for collecting behavioral data in VR; within the scope of
virtual environments, we have proposed a way of creating eye-trackable 3D scenes. The process
of creation was intended to respect the visual cognitive styles theory. Also, potential technological
shortcomings were covered – so that data collection/cleansing are not negatively affected.

We are yet to analyse data and produce results based on the eye-tracking task we have implemented.
For this, data processing solutions may have to be developed. The proposed approach, however,
serves as a research design baseline for future studies in visual cognitive styles and similar subjects.
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