

UTILIZATION OF VIRTUAL REALITY FOR TEACHING 3D TASKS IN GEOGRAPHY

Hana Svatoňová, Radovan Šikl, Tomáš Urbánek, Čeněk Šašinka, Vojtěch Juřík, Kateřina Chmelařová, Pavel Ugwitz, Petr Kubíček, Zdeněk Stachoň, Lukáš Herman, **Radim Stuchlík***, Michal Sedlák, Fotios Liarokapis, Jiří Chmelík

* Department of Geography, Faculty of Science, Masaryk University, Czech Republic

INTRODUCTION

- Part of the project: "Influence of cartographic visualization methods on the success of solving practical and educational spatial tasks".
- Project duration: 2016 2018.
- Investor: Grant Agency of Masaryk University.
- Participating Faculties: Faculty of Science, Education,
 Arts, Informatics.
- Acronym: Carto4edu.

AIMS OF THE ENTIRE PROJECT – MAIN RESEARCH QUESTIONS

- How different methods of visualization and user interfaces (UI) affects the way of solving spatial tasks by individual person or by group of people?
- How these methods affect the efficiency of processing and interpretation of spatial information and learning?

MOTIVATION

- We have entered 3D era (Boughzala, 2012).
- "Decision making with the immersive visual analytics is it necessary?" (AAG 2016, Alex Klippel, 3D VR and AR for GI).
- 3D technologies in geography related areas like:
 - education,
 - crisis management,
 - traffic,
 - aviation etc.

BUT

- Where is the added value?
- The use of 3D is still ambigous (Livatino et al., 2015; Seipel, 2012; Beurden et al., 2010; Pascher & Philip, 2001 and others).

THE MAIN EXPERIMENT - MOTIVATIONS

- Where is the added value of Virtual Reality usability?
- Example tasks long term bad results of students at entrance examinations at the Department of Geography, Faculty of Science, Masaryk University.
- It turns out that high school students have great difficulties to work with contours.

Hiking trail from point A to B leads:

- a) on the ridge up to hill
- b) on the ridge down to hill
- c) in a valley down to hill
- d) in a valley up to hill

Figure 1 Example of entrance examinations task.

THE MAIN MOTIVATIONS II

- The results of this described project will not be only objective but also quantifiable.
- Objective of this project will determine whether and how much learning in virtual reality helps understanding the problem.

EXPERIMENT WITH 3D SHUTTER GLASSES

39 volunteers (18 females and males; age 16-18) from two highschools in Brno (the Czech Republic).

Which of lines on the terrain matches the profile on the right?

Red

Green

Blue

RESULTS OF THIS TEST

Correct answers

	static	interactive
pseudo 3D	m=5.00; sd=1.34	m=5.74; sd=1.33
real 3D	m=5.15; sd=1.66	m=5.77; sd=1.39

Response times

	static	interactive
pseudo 3D	m=16.30; sd=5.86	m=20.85; sd=8.89
real 3D	m=16.72; sd=5.79	m=20.01; sd=8.94

EXPERIMENT WITH VIRTUAL REALITY

- This experiment is in progress.
- We are working on its design.

HARDWARE

HTC VIVE Virtual Reality System.

SOFTWARE

- Unity cross-platform game engine developed by Unity Technologies.
 - For developing video games and simulations for computers, consoles and mobile devices.
 - Unity GUI or coding (JavaScript, C#).

EDUCATION IN VIRTUAL REALITY

NEXT STEPS

- Experiment with students from high schools.
- Fall 2017.
- Are You interested in co-operation? contact me!

ACKNOWLEDGEMENTS

- This research has been supported by funding from the project of Masaryk University under the grant agreement No. MUNI/M/0846/2015.
- Web: http://carto4edu.ped.muni.cz/
- Main investigator: Assoc. Prof. PhDr. MSc. Hana Svatoňová, Ph.D. svatonova@ped.muni.cz.

RESOURCES

- Boughzala, I., de Vreede, G. J., Limayem, M. (2012). Team Collaboration in Virtual Worlds: Editorial to the Special Issue. Journal of the Association for Information Systems. 13 (Special Issue): 714-734.
- Livatino, S., De Paolis, L., D'Agostino, M., Zocco, A., Agrimi, A., De Santis, A., Lapresa, M. (2015). Stereoscopic Visualization and 3D Technologies in Medical Endoscopic Teleoperation. IEEE Transactions on Industrial Electronics, 62(1), 525-535.
- Pascher, R., & Philip, F. (2001). 3D visualization and stereographic techniques for medical research and education. Medicine Meets Virtual Reality 2001: Outer Space, Inner Space, Virtual Space, 81, 434.
- Seipel, S. (2012). Evaluating 2D and 3D geovisualisations for basic spatial assessment. Behaviour & Information Technology, 32(8), pp. 845-858.

THANK YOU radim.stuchlik@mail.muni.cz